A comparison of two model averaging techniques with an application to growth empirics

نویسنده

  • Jan R. Magnus
چکیده

Empirical growth research faces a high degree of model uncertainty. The current paper deals with the fundamental issue of parameter estimation under model uncertainty, and compares the performance of various model averaging techniques. In particular, it contrasts Bayesian model averaging (BMA) — currently one of the standard methods used in growth empirics — with a new method called weighted-average least squares (WALS). The new method has two major advantages over BMA: its computational burden is trivial and it is based on a transparent definition of prior ignorance. JEL Classification: C51, C52, C13, C11

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

آموزش و رشد اقتصادی در ایران: یک ارزیابی بنیادی از مسائل و چالش های نظری و روش شناسی

The main purpose of this article is to evaluate the effect of education on Iran’s economic growth during 1338-89 within the framework of endogenous growth theory, focusing on three key issues: exploring the scope and main aspects of education and growth with their theoretical and technical requirements, a critical evaluation of Iranian empirical research dominated by crucial problems and challe...

متن کامل

Designing a model of intuitionistic fuzzy VIKOR in multi-attribute group decision-making problems

Multiple attributes group decision making (MAGDM) is regarded as the process of determining the best feasible solution by a group of experts or decision makers according to the attributes that represent different effects. In assessing the performance of each alternative with respect to each attribute and the relative importance of the selected attributes, quantitative/qualitative evaluations ar...

متن کامل

Application of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction

This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...

متن کامل

بررسی عوامل مؤثر بر تورم در ایران مبتنی بر رویکرد میانگین‌گیری بیزینی (BMA) و میانگین‌گیری حداقل مربعات (WALS)

In this research to show how 14 variables affect inflation in period 1974-2007, Bayesian model averaging and weighted average least square methods has been used. And also by using Vselect program optimal model for every independent variable has been identified. Results show that price index growth of imported goods is the main factor for inflation in Iran economic. In ranking this 14 factors –t...

متن کامل

Factors Affecting Energy Intensity in Provinces of Iran: Bayesian Averaging Approach

The identification of the most important factors affecting energy intensity with the aim of controlling and managing energy consumption is an important topic. Findings of different empirical studies on the factors affecting energy intensity are inconsistent and this raises uncertainty about the employed models. One of the techniques that conform to these uncertainty conditions of the model is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008